All teaching work must be carried out by an operator who has received special training. (This also applies to maintenance work with the power source turned ON.)

Enforcement of safety training

For teaching work, prepare a work plan related to the methods and procedures of operating the robot, and to the measures to be taken when an error occurs or when restarting. Carry out work following this plan. (This also applies to maintenance work with the power source turned ON.)

Preparation of work plan

Prepare a device that allows operation to be stopped immediately during teaching work. (This also applies to maintenance work with the power source turned ON.)

Setting of emergency stop switch

During teaching work, place a sign indicating that teaching work is in progress on the start switch, etc. (This also applies to maintenance work with the power source turned ON.)

Indication of teaching work in progress

Provide a fence or enclosure during operation to prevent contact of the operator and robot.

Installation of safety fence

Establish a set signaling method to the related operators for starting work, and follow this method.

Signaling of operation start

As a principle turn the power OFF during maintenance work. Place a sign indicating that maintenance work is in progress on the start switch, etc.

Indication of maintenance work in progress

Before starting work, inspect the robot, emergency stop switch and other related devices, etc., and confirm that there are no errors.

Inspection before starting work
The points of the precautions given in the separate "Safety Manual" are given below. Refer to the actual "Safety Manual" for details.

⚠️ **CAUTION**  Use the robot within the environment given in the specifications. Failure to do so could lead to a drop or reliability or faults. (Temperature, humidity, atmosphere, noise environment, etc.)

⚠️ **CAUTION**  Transport the robot with the designated transportation posture. Transporting the robot in a non-designated posture could lead to personal injuries or faults from dropping.

⚠️ **CAUTION**  Always use the robot installed on a secure table. Use in an instable posture could lead to positional deviation and vibration.

⚠️ **CAUTION**  Wire the cable as far away from noise sources as possible. If placed near a noise source, positional deviation or malfunction could occur.

⚠️ **CAUTION**  Do not apply excessive force on the connector or excessively bend the cable. Failure to observe this could lead to contact defects or wire breakage.

⚠️ **CAUTION**  Make sure that the workpiece weight, including the hand, does not exceed the rated load or tolerable torque. Exceeding these values could lead to alarms or faults.

⚠️ **WARNING**  Securely install the hand and tool, and securely grasp the workpiece. Failure to observe this could lead to personal injuries or damage if the object comes off or flies off during operation.

⚠️ **WARNING**  Securely ground the robot and controller. Failure to observe this could lead to malfunctioning by noise or to electric shock accidents.

⚠️ **CAUTION**  Indicate the operation state during robot operation. Failure to indicate the state could lead to operators approaching the robot or to incorrect operation.

⚠️ **WARNING**  When carrying out teaching work in the robot’s movement range, always secure the priority right for the robot control. Failure to observe this could lead to personal injuries or damage if the robot is started with external commands.

⚠️ **CAUTION**  Keep the jog speed as low as possible, and always watch the robot. Failure to do so could lead to interference with the workpiece or peripheral devices.

⚠️ **CAUTION**  After editing the program, always confirm the operation with step operation before starting automatic operation. Failure to do so could lead to interference with peripheral devices because of programming mistakes, etc.

⚠️ **CAUTION**  Make sure that if the safety fence entrance door is opened during automatic operation, the door is locked or that the robot will automatically stop. Failure to do so could lead to personal injuries.

⚠️ **CAUTION**  Never carry out modifications based on personal judgments, or use non-designated maintenance parts. Failure to observe this could lead to faults or failures.

⚠️ **WARNING**  When the robot arm has to be moved by hand from an external area, do not place hands or fingers in the openings. Failure to observe this could lead to hands or fingers catching depending on the posture.


**CAUTION** Do not stop the robot or apply emergency stop by turning the robot controller’s main power OFF. If the robot controller main power is turned OFF during automatic operation, the robot accuracy could be adversely affected. Moreover, it may interfere with the peripheral device by drop or move by inertia of the arm.

**CAUTION** Do not turn off the main power to the robot controller while rewriting the internal information of the robot controller such as the program or parameters. If the main power to the robot controller is turned off while in automatic operation or rewriting the program or parameters, the internal information of the robot controller may be damaged.

**CAUTION** Use the network equipments (personal computer, USB hub, LAN hub, etc) confirmed by manufacturer. The thing unsuitable for the FA environment (related with conformity, temperature or noise) exists in the equipments connected to USB, RS–232 or LAN. When using network equipment, measures against the noise, such as measures against EMI and the addition of the ferrite core, may be necessary. Please fully confirm the operation by customer. Guarantee and maintenance of the equipment on the market (usual office automation equipment) cannot be performed.

C. Notes of the basic component are shown.
*SD series: CRIDA–700 series

**CAUTION** Please install the earth leakage breaker in the primary side supply power supply of the controller because of leakage protection.
<table>
<thead>
<tr>
<th>Date of Point</th>
<th>Instruction Manual No.</th>
<th>Revision Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-06-01</td>
<td>BFP-A8922</td>
<td>* First print</td>
</tr>
</tbody>
</table>
Introduction

Thank you for purchasing the Mitsubishi industrial robot. This instruction manual explains procedures to be taken for unpacking, installing, servicing and inspecting the robot arm. Always read through this manual before starting use to ensure correct usage of the robot.
Contents

1 Before starting use .......................................................................................................................................................... 1-1
  1.1 Using the instruction manuals ................................................................................................................................. 1-1
    1.1.1 The details of each instruction manuals ............................................................................................................. 1-1
    1.1.2 Symbols used in instruction manual ................................................................................................................ 1-2
  1.2 Safety Precautions ..................................................................................................................................................... 1-3
    1.2.1 Precautions given in the separate Safety Manual ............................................................................................... 1-4

2 Unpacking to Installation ............................................................................................................................................. 2-6
  2.1 Confirming the product ............................................................................................................................................. 2-6
  2.2 Installation ............................................................................................................................................................... 2-7
    2.2.1 Unpacking ........................................................................................................................................................ 2-7
    2.2.2 Transportation procedures .................................................................................................................................. 2-8
    2.2.3 Installation procedures ......................................................................................................................................... 2-9
    2.2.4 Grounding procedures ......................................................................................................................................... 2-11
      (1) Grounding methods ........................................................................................................................................ 2-11
      (2) Grounding procedures .................................................................................................................................. 2-11
    2.2.5 Connecting with the controller ......................................................................................................................... 2-12
  2.3 Setting the origin ...................................................................................................................................................... 2-13
    2.3.1 Installing the teaching pendant (T/B) ................................................................................................................ 2-13
    2.3.2 Setting the origin with the origin data input method .......................................................................................... 2-14
      (1) Confirming the origin data ................................................................................................................................ 2-14
      (2) Turning ON the control power .......................................................................................................................... 2-14
      (3) Preparing the T/B ........................................................................................................................................... 2-15
      (4) Selecting the origin setting method .................................................................................................................. 2-16
      (5) Inputting the origin data ................................................................................................................................... 2-17
      (6) Installing the connector cover ......................................................................................................................... 2-18
  2.4 Confirming the operation ....................................................................................................................................... 2-19
      (1) JOINT jog operation .......................................................................................................................................... 2-23
      (2) XYZ jog operation ............................................................................................................................................ 2-25
      (3) TOOL jog operation ........................................................................................................................................ 2-27
      (4) 3-axis XYZ jog operation .................................................................................................................................. 2-29
      (5) CYLINDER jog operation ................................................................................................................................... 2-31
      (6) Work jog operation ........................................................................................................................................... 2-33

3 Installing the option devices ...................................................................................................................................... 3-39
  3.1 Installing the solenoid valve set (1A~VD04~RP/1A~VD04E~PR) ........................................................................... 3-39

4 Basic operations ......................................................................................................................................................... 4-40

5 Maintenance and Inspection ................................................................................................................................... 5-41
  5.1 Maintenance and inspection interval ......................................................................................................................... 5-41
  5.2 Inspection items ....................................................................................................................................................... 5-42
    5.2.1 Daily inspection items ....................................................................................................................................... 5-42
    5.2.2 Periodic inspection ........................................................................................................................................... 5-43
  5.3 Maintenance and inspection procedures ................................................................................................................ 5-44
    5.3.1 Robot arm structure ......................................................................................................................................... 5-44
    5.3.2 Installing/Removing the cover ........................................................................................................................ 5-46
    5.3.3 Inspecting, servicing, replacing and cleaning the timing belt ....................................................................... 5-47
      (1) Timing belt replacement period ....................................................................................................................... 5-47
      (2) Inspecting, adjusting and replacing the upper base timing belt ....................................................................... 5-48
      (3) Inspecting, adjusting and replacing the lower base timing belt ....................................................................... 5-49
      (4) Inspecting, adjusting and replacing the timing belt in No. 1 arm .................................................................. 5-50
      (5) Inspecting, adjusting and replacing the timing belt in No. 2 arm .................................................................. 5-52
      (6) Timing belt tension ......................................................................................................................................... 5-53
    5.3.4 Lubrication ......................................................................................................................................................... 5-54
      (1) Lubrication positions and specifications ........................................................................................................ 5-54
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) Lubrication method of J1, J2 axis reduction gears</td>
<td>5-55</td>
</tr>
<tr>
<td>(3) Lubrication method of ball screw spline</td>
<td>5-55</td>
</tr>
<tr>
<td>5.3.5 Replacing the backup battery</td>
<td>5-56</td>
</tr>
<tr>
<td>(1) Replacing the robot arm battery</td>
<td>5-57</td>
</tr>
<tr>
<td>5.4 Maintenance parts</td>
<td>5-59</td>
</tr>
<tr>
<td>5.5 Resetting the origin</td>
<td>5-61</td>
</tr>
<tr>
<td>5.5.1 Jig method</td>
<td>5-61</td>
</tr>
<tr>
<td>5.5.2 User origin method</td>
<td>5-64</td>
</tr>
<tr>
<td>5.5.3 Recording the origin data</td>
<td>5-65</td>
</tr>
<tr>
<td>(1) Confirming the origin data label</td>
<td>5-65</td>
</tr>
<tr>
<td>(2) Confirming the origin data</td>
<td>5-65</td>
</tr>
<tr>
<td>(3) Recording the origin data</td>
<td>5-65</td>
</tr>
<tr>
<td>(4) Installing the connector box cover</td>
<td>5-65</td>
</tr>
</tbody>
</table>
1 Before starting use

This chapter explains the details and usage methods of the instruction manuals, the basic terminology and the safety precautions.

1.1 Using the instruction manuals

1.1.1 The details of each instruction manuals

The contents and purposes of the documents enclosed with this product are shown below. Use these documents according to the application.

For special specifications, a separate instruction manual describing the special section may be enclosed.

<table>
<thead>
<tr>
<th>Safety Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explains the common precautions and safety measures to be taken for robot handling, system design and manufacture to ensure safety of the operators involved with the robot.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explains the product’s standard specifications, factory-set special specifications, option configuration and maintenance parts, etc. Precautions for safety and technology, when incorporating the robot, are also explained.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Robot Arm Setup &amp; Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explains the procedures required to operate the robot arm (unpacking, transportation, installation, confirmation of operation), and the maintenance and inspection procedures.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controller Setup, Basic Operation and Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explains the procedures required to operate the controller (unpacking, transportation, installation, confirmation of operation), basic operation from creating the program to automatic operation, and the maintenance and inspection procedures.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detailed Explanation of Functions and Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explains details on the functions and operations such as each function and operation, commands used in the program, connection with the external input/output device, and parameters, etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explains the causes and remedies to be taken when an error occurs. Explanations are given for each error No.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional axis function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explains the specifications, functions and operations of the additional axis control.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tracking Function Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explains the control function and specifications of conveyor tracking</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extended Function Instruction Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explains the detailed description of data configuration of shared memory, monitoring, and operating procedures about the GOT.</td>
</tr>
</tbody>
</table>
1.1.2 Symbols used in instruction manual

The symbols and expressions shown in Table 1-1 are used throughout this instruction manual. Learn the meaning of these symbols before reading this instruction manual.

Table 1-1: Symbols in instruction manual

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Item/Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Item</strong></td>
<td>The &quot;Robot controller&quot; or the &quot;Controller&quot;</td>
<td>Indicates the controller which controls the robot arm. Indicates the box which arranged control parts, such as robot CPU, servo amplifier, and the safety circuit.</td>
</tr>
<tr>
<td><strong>Symbol</strong></td>
<td><img src="image" alt="DANGER" /></td>
<td>Precaution indicating cases where there is a risk of operator fatality or serious injury if handling is mistaken. Always observe these precautions to safely use the robot.</td>
</tr>
<tr>
<td></td>
<td><img src="image" alt="WARNING" /></td>
<td>Precaution indicating cases where the operator could be subject to fatalities or serious injuries if handling is mistaken. Always observe these precautions to safely use the robot.</td>
</tr>
<tr>
<td></td>
<td><img src="image" alt="CAUTION" /></td>
<td>Precaution indicating cases where operator could be subject to injury or physical damage could occur if handling is mistaken. Always observe these precautions to safely use the robot.</td>
</tr>
<tr>
<td></td>
<td>[JOG]</td>
<td>If a word is enclosed in brackets or a box in the text, this refers to a key on the teaching pendant.</td>
</tr>
<tr>
<td></td>
<td>[RESET] + [EXE] (A) (B)</td>
<td>This indicates to press the (B) key while holding down the (A) key. In this example, the [RESET] key is pressed while holding down the [+EXE] key.</td>
</tr>
<tr>
<td></td>
<td>T/B</td>
<td>This indicates the teaching pendant.</td>
</tr>
<tr>
<td></td>
<td>O/P</td>
<td>This indicates the operating panel on the front of the controller(drive unit).</td>
</tr>
</tbody>
</table>
1.2 Safety Precautions

Always read the following precautions and the separate “Safety Manual” before starting use of the robot to learn the required measures to be taken.

⚠️ CAUTION All teaching work must be carried out by an operator who has received special training. (This also applies to maintenance work with the power source turned ON.)

Enforcement of safety training

⚠️ CAUTION For teaching work, prepare a work plan related to the methods and procedures of operating the robot, and to the measures to be taken when an error occurs or when restarting. Carry out work following this plan. (This also applies to maintenance work with the power source turned ON.)

Preparation of work plan

⚠️ WARNING Prepare a device that allows operation to be stopped immediately during teaching work. (This also applies to maintenance work with the power source turned ON.)

Setting of emergency stop switch

⚠️ CAUTION During teaching work, place a sign indicating that teaching work is in progress on the start switch, etc. (This also applies to maintenance work with the power source turned ON.)

Indication of teaching work in progress

⚠️ DANGER Provide a fence or enclosure during operation to prevent contact of the operator and robot.

Installation of safety fence

⚠️ CAUTION Establish a set signaling method to the related operators for starting work, and follow this method.

Signaling of operation start

⚠️ CAUTION As a principle turn the power OFF during maintenance work. Place a sign indicating that maintenance work is in progress on the start switch, etc.

Indication of maintenance work in progress

⚠️ CAUTION Before starting work, inspect the robot, emergency stop switch and other related devices, etc., and confirm that there are no errors.

Inspection before starting work
1.2.1 Precautions given in the separate Safety Manual  
The points of the precautions given in the separate “Safety Manual” are given below.  
Refer to the actual “Safety Manual” for details.

⚠️ **DANGER**  
If the automatic operation of the robot is operated by two or more control equipment,  
design the right management of operation of each equipment of the customer.

⚠️ **CAUTION**  
Use the robot within the environment given in the specifications. Failure to do so could  
lead to a drop or reliability or faults. (Temperature, humidity, atmosphere, noise  
environment, etc.)

⚠️ **CAUTION**  
Transport the robot with the designated transportation posture. Transporting the  
robot in a non-designated posture could lead to personal injuries or faults from  
dropping.

⚠️ **CAUTION**  
Always use the robot installed on a secure table. Use in an instable posture could lead  
to positional deviation and vibration.

⚠️ **CAUTION**  
Wire the cable as far away from noise sources as possible. If placed near a noise  
source, positional deviation or malfunction could occur.

⚠️ **CAUTION**  
Do not apply excessive force on the connector or excessively bend the cable. Failure  
to observe this could lead to contact defects or wire breakage.

⚠️ **CAUTION**  
Make sure that the workpiece weight, including the hand, does not exceed the rated  
load or tolerable torque. Exceeding these values could lead to alarms or faults.

⚠️ **WARNING**  
Securely install the hand and tool, and securely grasp the workpiece. Failure to  
observe this could lead to personal injuries or damage if the object comes off or flies  
off during operation.

⚠️ **WARNING**  
Securely ground the robot and controller. Failure to observe this could lead to  
malfunctioning by noise or to electric shock accidents.

⚠️ **CAUTION**  
Indicate the operation state during robot operation. Failure to indicate the state could  
lead to operators approaching the robot or to incorrect operation.

⚠️ **WARNING**  
When carrying out teaching work in the robot’s movement range, always secure the  
priority right for the robot control. Failure to observe this could lead to personal  
injuries or damage if the robot is started with external commands.

⚠️ **CAUTION**  
Keep the jog speed as low as possible, and always watch the robot. Failure to do so  
could lead to interference with the workpiece or peripheral devices.

⚠️ **CAUTION**  
After editing the program, always confirm the operation with step operation before  
starting automatic operation. Failure to do so could lead to interference with  
peripheral devices because of programming mistakes, etc.  
Make sure that if the safety fence entrance door is opened during automatic  
operation, the door is locked or that the robot will automatically stop. Failure to do so  
could lead to personal injuries.

⚠️ **CAUTION**  
Never carry out modifications based on personal judgments, or use non-designated  
maintenance parts.  
Failure to observe this could lead to faults or failures.

⚠️ **WARNING**  
When the robot arm has to be moved by hand from an external area, do not place  
hands or fingers in the openings. Failure to observe this could lead to hands or fingers  
catching depending on the posture.
1 Before starting use

⚠️ **CAUTION**  Do not stop the robot or apply emergency stop by turning the robot controller’s main power OFF. If the robot controller main power is turned OFF during automatic operation, the robot accuracy could be adversely affected.

⚠️ **CAUTION**  Do not turn off the main power to the robot controller while rewriting the internal information of the robot controller such as the program or parameters. If the main power to the robot controller is turned off while in automatic operation or rewriting the program or parameters, the internal information of the robot controller may be damaged.

⚠️ **DANGER**  When the SSCNETIII cable is removed, install the cap in the connector. If the cap is not installed, there is a possibility of malfunctioning by adhesion of the dust etc.

⚠️ **DANGER**  Don’t remove the SSCNETIII cable when the power supply of the robot controller is turned on. Don’t face squarely the light emitted from the tip of the SSCNETIII connector or the cable. If light strikes the eyes, there is a possibility of feeling the sense of incongruity for the eyes. (The light source of SSCNETIII is equivalent to the class 1 specified to JISC6802 and IEC60825-1.)
2 Unpacking to Installation

2.1 Confirming the product

The standard configuration of the robot arm section, part of the purchased product, is shown in Table 2-1. Confirm the parts.

Users who have purchased optional products should refer to the separate “RP-1ADH/3ADH/5ADH-S15 Series Standard Specifications”.

Table 2-1: Standard configuration

<table>
<thead>
<tr>
<th>No.</th>
<th>Part name</th>
<th>Type</th>
<th>Qty. according to type-identifier</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Robot arm</td>
<td>RP-1ADH-S15,</td>
<td>Either one unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RP-3ADH-S15,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>or RP-5ADH-S15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Guarantee card</td>
<td></td>
<td>1 copy</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Installation bolts</td>
<td>M6 x 35</td>
<td>4 pcs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M8 x 45</td>
<td>-</td>
<td>4 pcs.</td>
</tr>
<tr>
<td>4</td>
<td>Spring washer for</td>
<td>For M6</td>
<td>4 pcs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>installation bolts</td>
<td>For M8</td>
<td>-</td>
<td>4 pcs.</td>
</tr>
<tr>
<td>5</td>
<td>Insulock tie</td>
<td>SKB-1M</td>
<td>2 pcs.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Arm fixing plates</td>
<td>Transportation jigs A</td>
<td>1 pc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transportation jigs B</td>
<td>2 pcs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transportation jigs D</td>
<td>-</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>7</td>
<td>Arm fixing plate</td>
<td>M4 x 12</td>
<td>2 pcs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>installation bolt</td>
<td>M3 x 14</td>
<td>2 pcs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M4 x 14</td>
<td>-</td>
<td>2 pcs.</td>
</tr>
</tbody>
</table>
2.2 Installation

2.2.1 Unpacking

The robot is shipped from the factory in cardboard packaging. Refer to Table 2-1 and unpack the robot. Handle the robot arm following "2.2.2 Transportation procedures".
2.2.2 Transportation procedures

1) Open the cardboard box, and remove the cushioning material fixing the robot arm and connector box.
2) When transporting the robot, leave the transportation jigs A and B in place to protect the arm from external force. Three workers must transport the robot for safety purposes. As shown in “Fig. 2-2: Transportation posture, transportation method, and fixing positions”, one worker must hold the handle on the robot arm base, another worker must hold the robot arm, and a third worker must hold the connector box.

**CAUTION**

To prevent accidents, do not hold the axis section on the end of the robot, or pull the cables.

3) Avoid applying vibration or impact when transferring the robot to the installation place.
4) Remove the transportation jigs A and B after installing at the installation place. Always remove transportation jigs A and B before starting the robot operation.
5) Use the same transportation procedures described above during secondary transportation, such as when changing the installation place. If the arm section is lifted without using the designated transportation jigs, or if the robot is transferred in the work posture, hazards could occur during the transportation work, such as the configuration devices being damaged or the center of gravity position being deviated.

---

**Fig. 2-2**: Transportation posture, transportation method, and fixing positions

- **Transportation jig A (RP-1ADH-S15)**
- **Transportation jig D (RP-3ADH-S15, RP-5ADH-S15)**
- **Transportation jig A fixing bolt M4 × 12**
- **Transportation jig D fixing bolt M4 × 12**
- **Transportation jig B fixing bolt M3 × 14**
- **Base handle (1st worker)**
- **Connector box (3rd worker)**
- **Support for transportation (2nd worker)**

**Mass**
- RP-1ADH-S15: Approx. 14kg
- RP-3ADH-S15: Approx. 26kg
- RP-5ADH-S15: Approx. 27kg
2.2.3 Installation procedures

Fig. 2-3: Installation procedures and installation dimensions.

- M6 x 35 hexagon socket bolt (4 places) (RP-1ADH-S15)
- M8 x 40 hexagon socket bolt (4 places) (RP-3ADH-S15, RP-5ADH-S15)
- Spring washer (RP-1ADH-S15)
- Small plain washer (RP-3ADH-S15, RP-5ADH-S15)
- M4 x 10 hexagon socket bolt (4 places)
- Spring washer
- Small plain washer

4-φ7 installation hole

Bottom side of base (RP-1ADH-S15)

6.3a

Installation reference surface

2-φ6H7 for positioning

4-φ9 installation hole

Bottom side of connector box (For each type)

6.3a

Installation reference surface

2-φ8H7 for positioning

4-φ5 installation hole

Bottom side of connector box (For each type)
The installation surface of the robot arm has been machined finished, so securely fix the robot arm with the installation holes (RP-1ADH-S15: 4-φ7 hole, RP-3ADH-S15, RP-5ADH-S15: 4-φ9 hole) provided at the four corners of the base and the enclosed installation bolts (RP-1ADH-S15: M6 x 35 hexagon socket bolts, RP-3ADH-S15, RP-5ADH-S15: M8 x 40 hexagon socket bolts).

Installation of the robot arm is a very important step for ensuring the optimum functions of the robot. Observe the following points when designing.

1) Keep the installation surface flat.
2) The surface roughness of the installation surface should be 6.3a or more. If the installation surface is rough, the robot seating will be poor, and positional deviation could occur when the robot is operated.
3) It is recommended to use a common table when installing to prevent positional deviation of the devices and jigs targeted for robot work.
4) Make sure that the installation surface has sufficient rigidity to prevent deformation or vibration caused by the arm reaction during operation, and from the static (dynamic) load of the robot arm and peripheral devices.
5) Fix the connector box with M4 hexagon socket bolts. (To be prepared by user. Should have length of 10mm or more.)
2.2.4 Grounding procedures

(1) Grounding methods

1) There are three grounding methods as shown in Fig. 2-4, but the dedicated grounding (Fig. 2-4 (a)) should be used for the robot arm and controller when possible. (Refer to the separate "Controller setup, basic operation, and maintenance" for details on the controller grounding.)

2) Use Class D grounding (grounding resistance 100Ω or less). Dedicated grounding separated from the other devices should be used.

3) Use a 2mm² or more stranded wire for the grounding wire. The grounding point should be as close to the robot arm and controller as possible, and the length of the grounding wire should be short.

Fig.2-4 : Grounding methods

(2) Grounding procedures

1) Prepare the grounding cable (2 mm² or more) and robot side installation screw and washer.

2) If there is rust or paint on the grounding screw section (A), remove it with a file, etc.

3) Connect the grounding cable to the grounding screw section.

Fig.2-5 : Connecting the grounding cable
2.2.5 Connecting with the controller

Carry out the following procedure after installing the controller referring to the separate "Controller setup, basic operation, and maintenance" manual.

1) Make sure that the power switch on the front of the controller is turned OFF.
2) Connect the machine cable to the robot arm and the corresponding connector on the controller.

⚠️ **CAUTION**  The machine cable connectors are dedicated for the controller side and robot arm side, so take special care when connecting. If connected incorrectly, the connector pins could bend or break. Thus, even if connected correctly, the robot will not operate correctly, creating a dangerous situation.

⚠️ **CAUTION**  Take special care to the leading of the connection cable. If the cable is pulled with force or bent excessively, wires could break or the connector could be damaged.

[Reference]: Please carry out the measures against the noise if necessary.

Installs the ferrite core (reference type: E04SR301334, maker: SEIWA ELECTRIC MFG. Co. Ltd.) to the motor signal cable of the robot arm side.
2.3 Setting the origin

The origin is set so that the robot can be used with a high accuracy. After purchasing the robot, always carry out this step before starting work. This step must also be carried out if the combination of robot and controller being used is changed.

There are several methods for setting the origin, but the origin data input method will be explained here. Refer to page 61, “5.5 Resetting the origin” for the other methods.

The teaching pendant is required for this operation.

[Caution] If the origin data at shipment is erased due to out of battery, it is necessary to set the origin again. Refer to page 61, “5.5 Resetting the origin” and reset the origin using the jig method or ABS method.

2.3.1 Installing the teaching pendant (T/B)

When installing and removing the T/B, turn off the controller power supply. If T/B is installed or removed in the state of power supply ON, emergency stop alarm will occur.

If you use the robot wherein T/B is removed, please install the attached dummy connector. With the connector, put the dummy connector or draw it out.

⚠️ CAUTION

Please do not pull the cable of T/B strongly or do not bend it too much. It becomes the breaking of a wire of the cable and the cause of breakage of the connector. Please installing and removing so that stress does not start the cable with the connector itself.

Explain the installation method of T/B below.

1) Check that the POWER (power supply) switch of the robot controller is OFF.
2) Connects T/B connector to the robot controller. Use as the upper surface the lock lever shown in Fig. 2-7, and push in until there is sound.

Fig.2-7 : Installing and removing the T/B

The installation of T/B is finished.

◇◆◇ If error C0150 occurs ◇◆◇

At the time of the first power supply injection, error:C0150 (the serial number of the robot arm has not been set up) occur the robot after purchase.

Parameter: Please input the serial number of the robot body into RBSERIAL. Refer to “instructions manual / controller setup, and basic operation & maintenance” for the operation method.
2.3.2 Setting the origin with the origin data input method
(1) Confirming the origin data

The origin data to be input is noted in the origin data sheet enclosed with the arm, or on the origin data history table attached to the back side of the connector box cover. (Refer to Fig. 2-8).

Referring to page 57 "Fig. 5-10: Replacing the battery", remove the connector box cover, and confirm the value.

The value given in the default setting column is the origin settings set with the calibration jig before shipment.

<table>
<thead>
<tr>
<th>Date</th>
<th>Default</th>
<th>Method</th>
<th>Date</th>
<th>Default</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>V#S29</td>
<td>E</td>
<td>J1</td>
<td>06DTYY</td>
<td>E</td>
</tr>
<tr>
<td>J2</td>
<td>2?HL9X</td>
<td>N</td>
<td>J3</td>
<td>1CP55V</td>
<td>N</td>
</tr>
<tr>
<td>J4</td>
<td>T#M$Y</td>
<td>S P</td>
<td>J5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J6</td>
<td></td>
<td></td>
<td>J7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig.2-8 : Origin data label an example

⚠️ WARNING
Always install/remove the cover with the controller control power turned OFF. Failure to do so could lead to physical damage or personal injury should the robot start moving due to incorrect operations.

(2) Turning ON the control power

⚠️ CAUTION
Confirm that there are no operators near the robot before turning the power ON.

1) Turn the controller [POWER] switch ON.
The control power will be turned ON, and “0. 100” will appear on the STATUS NUMBER display on the front of the controller.
(3) Preparing the T/B

Next, prepare to use the T/B

1) Set the [MODE] switch on the front of the controller to "MANUAL".

2) Set the T/B [ENABLE] switch to "ENABLE". The menu selection screen will appear.
   The following operations are carried out with the T/B.

◇◆◇ Operating from the T/B ◇◆◇

Always set the [MODE] switch (mode selection key switch) on the front of the controller to "MANUAL", and then set the T/B [ENABLE] switch to "ENABLE".
When the T/B is valid, only operations from the T/B are possible. Operations from the controller or external signals will not be accepted.
(4) Selecting the origin setting method

1) Press the [4] key on the menu screen, and display the ORIGIN/BRAKE screen.

2) Press the [1] key on the ORIGIN/BRAKE screen, and display the origin setting method selection screen.

3) Press the [1] key on the origin setting method selection screen, and select the data input method.

4) Display the origin data input screen.

◇◆◇ Selecting a menu ◇◆◇

The menu can be selected with one of the following methods.
A: Press the numeral key for the No. of the item to be selected.
B: Using the [↓] and [↑] keys, etc., move the cursor to the item to be selected, and then press the [INP] key.

◇◆◇ The input method of numeral ◇◆◇

The number can be inputted if the key displayed on the lower left of each key is pressed. Press the [CHARACTER] key, and in the condition that “123” is displayed on the screen lower side, press the number key.
(5) Inputting the origin data

Input the value confirmed in section page 14, “(1) Confirming the origin data”.
The correspondence of the origin data label value and axis to be input is shown in Fig. 2-9.

Fig.2-9 : Correspondence of origin data label and axis

The method for inputting the origin data is explained below. The value shown in Fig. 2-8 will be input as an example.

1) Confirm that the cursor is at the “D” position on the T/B display screen.

2) Input the D value “V!%S29”.

   **Inputting “V”**
   Press the [CHARACTER] key and set to the character input mode. (Condition that “ABC” was displayed under the screen)
   Press the [TUV] key three times. “V” will be set.

   **Inputting “!”**
   Press the [, %] key five times. “!” will be set.
   Press the [ → ] key once and advance the cursor.
   Press the [, %] key twice (input “%”), and press the [PQRS] key four times (input “S”).

   Press the [CHARACTER] key and set to the numeral input mode. (Condition that “123” was displayed under the screen)

   “V!%S29” will appear at the “D” data on the teaching pendant screen.

3) Press the [ ↓ ] key, and move the cursor to the J1 input position.
4) Input the J1 value in the same manner as above.

Input the J2, J3, J4, J5 and J6 values in the same manner.
After inputting all of the values, press the [EXE] key. The origin setting confirmation screen will appear.

Press [F1] (Yes) to end the origin setting.

- **Moving the cursor**
  - Press the [↑], [↓], [←] and [→] keys.

- **Inputting characters**
  - Press the [CHARACTER] key and set to the character input mode. (Condition that “ABC” was displayed under the screen). The displayed character is scrolled each time at pressing the key.

- **Correcting an input**
  - After returning one character by pressing the [CLEAR] key, input the character again.

(6) Installing the connector cover

Return the connector cover, removed in page 14, “(1) Confirming the origin data” to its original position.

This completes the setting of the origin with the origin data input method.

**WARNING**
Always remove and install the cover with the controller power turned OFF. Failure to do so could lead to the robot moving because of incorrect operations, or to physical damage or personal injury.

- **If the origin input data is incorrect**
  - If the origin input data is incorrect, the alarm No. 1760 (origin setting data illegal) will occur when origin data input.
  - In this case, reconfirm the value input for the origin data.
2.4 Confirming the operation

In this section, the robot will be moved manually using the T/B to confirm that the operation is correct. Moving the robot manually is called “jog operation”. This operation includes the JOINT jog that moves each axis, the XYZ jog that moves along the base coordinate system, the TOOL jog that moves along the tool coordinate system, and the CYLINDER jog that moves along the circular arc. This operation is carried out while pressing the deadman switch on the back of the T/B.

⚠️ CAUTION ⚠️

The robot will move during this operation. Make sure that there are no operators near the robot, and that there are no obstacles, such as tools, in the robot operation range.

⚠️ CAUTION ⚠️

To immediately stop the robot, release the deadman switch on the back of the T/B. The servo power will turn OFF, and the robot will stop. The robot will also stop if the [EMG.STOP] switch (emergency stop switch) on the front of the T/B or the [EMG.STOP] switch (emergency stop) on the front of the controller is pressed.

⚠️ WARNING ⚠️

Confirm that the origin has been set. If the origin has not been set, “****” will appear at the current position display on the teaching pendant, the JOINT jog operation will take place in any jog mode selected. Refer to page 13, “2.3 Setting the origin” for details on setting the origin.

* Each axis moves independently.

Fig.2-10 : JOINT jog operation
* While maintaining the posture of the end axis, the robot moves straight along the xyz coordinate system. The end axis rotates.

* While maintaining the posture of the end axis, the robot moves straight along the tool coordinate system. The end axis changes directions while maintaining its position.
* The robot moves straight along the xyz coordinate system. The direction of the end axis is not maintained during this type. The direction of the end axis changes. At this time, the end axis position will change.

Fig.2-13 : 3-axis XYZ jog operation

* With an arc using the end axis position as the center of the Z axis, the robot moves over the arc, expands and contracts in the radial direction, and moves vertically. At this time, the posture of the end axis is maintained. The direction is changed while maintaining the end axis position.

Fig.2-14 : CYLINDER jog operation
Fig.2-15 : Work jog operation

* While maintaining the end axis posture, the axis moves straight along the work coordinate system. Also, while maintaining the end axis position, the end axis posture changes.
(1) JOINT jog operation

Select joint jog mode

<table>
<thead>
<tr>
<th>JOINT</th>
<th>100% M1 T0</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1:</td>
<td>+0.00</td>
</tr>
<tr>
<td>J2:</td>
<td>+0.00</td>
</tr>
<tr>
<td>J3:</td>
<td>+90.00</td>
</tr>
<tr>
<td>J4:</td>
<td>+0.00</td>
</tr>
</tbody>
</table>

[X] TOOL JOG 3-XYZ CYLNR

[JOG] Press the key and display the jog screen. (“JOG” is displayed on the screen bottom)

Check that the “joint” in jog mode is displayed on the screen.

If other jog modes are displayed, please press the function key corresponding to the “joint.” (If the jog mode which he wishes under the screen is not displayed, it is displayed that the [FUNCTION] key is pressed)

If it finishes jog operation, press the [JOG] key again, or function key which correspond to “close.”

Whenever it presses the key of [OVRD ↑], the override goes up. Conversely, if the [OVRD ↓] key is pressed, it will go down.

The current setting speed is displayed on screen upper right, and “STATUS NUMBER” of the controller.

Set the override to 10% here for confirmation work

When the [+X (J1)] keys are pressed, the J1 axis will rotate in the plus direction.
When the [-X (J1)] keys are pressed, rotate in the minus direction.

When the [+Y (J2)] keys are pressed, the J2 axis will rotate in the plus direction.
When the [-Y (J2)] keys are pressed, rotate in the minus direction.

◇◆◇ When the robot is in the transportation posture ◇◆◇

The axes may be outside the movement area. Move these axes toward the inner side of the movement area.
J3 axis jog operation

When the [+Z (J3)] keys are pressed, the J3 axis will move to the plus direction (up).
When the [-Z (J3)] keys are pressed, the J3 axis will move to the minus direction (down).

J4 axis jog operation

When the [+A (J4)] keys are pressed, the J4 axis will rotate in the plus direction.
When the [-A (J4)] keys are pressed, the J4 axis will rotate in the minus direction.

◇◆◇If the buzzer of T/B sounds and the robot does not move ◇◆◇
If it is going to move the robot across the operation range, the buzzer of T/B sounds and the robot does not move. In this case, please move to the counter direction.
(2) XYZ jog operation

Select XYZ jog mode

<table>
<thead>
<tr>
<th>JOINT</th>
<th>100% M1 TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1: +0.00</td>
<td>J5: +0.00</td>
</tr>
<tr>
<td>J2: +0.00</td>
<td>J6: +0.00</td>
</tr>
<tr>
<td>J3: +90.00</td>
<td></td>
</tr>
<tr>
<td>J4: +0.00</td>
<td></td>
</tr>
</tbody>
</table>

XYZ TOOL JOG 3-XYZ CYLNR

Set jog speed

<table>
<thead>
<tr>
<th>JOINT</th>
<th>100% M1 TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1: +0.00</td>
<td>J5: +0.00</td>
</tr>
<tr>
<td>J2: +0.00</td>
<td>J6: +0.00</td>
</tr>
<tr>
<td>J3: +90.00</td>
<td></td>
</tr>
<tr>
<td>J4: +0.00</td>
<td></td>
</tr>
</tbody>
</table>

XYZ TOOL JOG 3-XYZ CYLNR

[JOG] Press the key and display the jog screen. (“JOG” is displayed on the screen bottom)
Check that the “XYZ” in jog mode is displayed on the screen.
If other jog modes are displayed, please press the function key corresponding to the “XYZ.”
(If the jog mode which he wishes under the screen is not displayed, it is displayed that the [FUNCTION] key is pressed)
If it finishes jog operation, press the [JOG] key again, or function key which correspond to “close.”
Whenever it presses the key of [OVRD ↑ ], the override goes up. Conversely, if the [OVRD ↓ ] key is pressed, it will go down.
The current setting speed is displayed on screen upper right, and “STATUS NUMBER” of the controller.
Set the override to 10% here for confirmation work

Moving along the base coordinate system

When the [+X (J1)] keys are pressed, the robot will move along the X axis plus direction.
When the [-X (J1)] keys are pressed, move along the minus direction.

When the [+Y (J2)] keys are pressed, the robot will move along the Y axis plus direction.
When the [-Y (J2)] keys are pressed, move along the minus direction.

When the [+Z (J3)] keys are pressed, the robot will move along the Z axis plus direction.
When the [-Z (J3)] keys are pressed, move along the minus direction.

* The direction of the end axis will not change.

◇◆◇ When the robot is in the transportation posture ◇◆◇
There are directions from which linear movement is not possible from the transportation posture. In this case, the robot will not move. Refer to section page 23, “(1) JOINT jog operation”, and move the robot to a position where linear movement is possible, and then carry out XYZ jog.

◇◆◇ If the buzzer of T/B sounds and the robot does not move ◇◆◇
If it is going to move the robot across the operation range, the buzzer of T/B sounds and the robot does not move. In this case, please move to the counter direction.
Changing the direction of the end axis

When the \ [+C \ (J6)\] keys are pressed, the Z axis will rotate in the plus direction.

When the \ [-C \ (J6)\] keys are pressed, the Z axis will rotate in the minus direction.
The position of the end axis will not move.

* The Position of the end axis will not change.

◇◆◇ When alarm No. 5150 occurs ◇◆◇
If alarm No. 5150 (ORIGIN NOT SET) occurs, the origin has not been set correctly. Reconfirm the value input for the origin data.

◇◆◇ Tool length ◇◆◇
The default tool length is 0mm, and the control point is the center of the end axis.
After installing the hand, set the correct tool length in the parameters. Refer to the separate manual “Detailed Explanation of Functions and Operations” for details.
(3) TOOL jog operation

Select TOOL jog mode

<table>
<thead>
<tr>
<th>JOINT</th>
<th>100% M1 T0</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1:</td>
<td>+0.00</td>
</tr>
<tr>
<td>J2:</td>
<td>+0.00</td>
</tr>
<tr>
<td>J3:</td>
<td>+90.00</td>
</tr>
<tr>
<td>J4:</td>
<td>+0.00</td>
</tr>
</tbody>
</table>

XYZ TOOL JOG 3-XYZ CYLNDR ⇒ TOOL jog mode

Set jog speed

<table>
<thead>
<tr>
<th>JOINT</th>
<th>100% M1 T0</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1:</td>
<td>+0.00</td>
</tr>
<tr>
<td>J2:</td>
<td>+0.00</td>
</tr>
<tr>
<td>J3:</td>
<td>+90.00</td>
</tr>
<tr>
<td>J4:</td>
<td>+0.00</td>
</tr>
</tbody>
</table>

XYZ TOOL JOG 3-XYZ CYLNDR ⇒ Setting the speed

[JOG] Press the key and display the jog screen. (“JOG” is displayed on the screen bottom)

Check that the “TOOL” in jog mode is displayed on the screen.

If other jog modes are displayed, please press the function key corresponding to the “TOOL.” (If the jog mode which he wishes under the screen is not displayed, it is displayed that the [FUNCTION] key is pressed)

If it finishes jog operation, press the [JOG] key again, or function key which correspond to “close.”

Whenever it presses the key of [OVRD ↑], the override goes up. Conversely, if the [OVRD ↓] key is pressed, it will go down.

The current setting speed is displayed on screen upper right, and “STATUS NUMBER” of the controller.

Set the override to 10% here for confirmation work

When the [+X (J1)] keys are pressed, the robot will move along the X axis plus direction of the tool coordinate system.

When the [-X (J1)] keys are pressed, move along the minus direction.

When the [+Y (J2)] keys are pressed, the robot will move along the Y axis plus direction of the tool coordinate system.

When the [-Y (J2)] keys are pressed, move along the minus direction. (6-axis type only)

When the [+Z (J3)] keys are pressed, the robot will move along the Z axis plus direction of the tool coordinate system.

When the [-Z (J3)] keys are pressed, move along the minus direction.

* The direction of the frange will not change.

◇◆◇ When the robot is in the transportation posture ◇◆◇

There are directions from which linear movement is not possible from the transportation posture. In this case, the robot will not move. Refer to section page 23, “(1) JOINT jog operation”, and move the robot to a position where linear movement is possible, and then carry out XYZ jog.

◇◆◇If the buzzer of T/B sounds and the robot does not move ◇◆◇

If it is going to move the robot across the operation range, the buzzer of T/B sounds and the robot does not move. In this case, please move to the counter direction.
Rotating the end axis

When the [+C (J6)] keys are pressed, the Z axis will rotate in the plus direction of the tool coordinate system. When the [−C (J6)] keys are pressed, the Z axis will rotate in the minus direction.

* The position of the end axis will not change.

◇◆◇ When alarm No. 5150 occurs ◇◆◇
If alarm No. 5150 (ORIGIN NOT SET) occurs, the origin has not been set correctly. Reconfirm the value input for the origin data.

◇◆◇ Tool length ◇◆◇
The default tool length is 0mm, and the control point is the center of the end axis. After installing the hand, set the correct tool length in the parameters. Refer to the separate manual “Detailed Explanation of Functions and Operations” for details.
(4) 3-axis XYZ jog operation

Select XYZ456 jog mode

<table>
<thead>
<tr>
<th>JOINT</th>
<th>100% M1 T0</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1:</td>
<td>+0.00</td>
</tr>
<tr>
<td>J2:</td>
<td>+0.00</td>
</tr>
<tr>
<td>J3:</td>
<td>+90.00</td>
</tr>
<tr>
<td>J4:</td>
<td>+0.00</td>
</tr>
</tbody>
</table>

[JOG] Press the key and display the jog screen. (“JOG” is displayed on the screen bottom) Check that the “XYZ456” in jog mode is displayed on the screen.

If other jog modes are displayed, please press the function key corresponding to the “XYZ456.” (If the jog mode which he wishes under the screen is not displayed, it is displayed that the [FUNCTION] key is pressed)

If it finishes jog operation, press the [JOG] key again, or function key which correspond to “close.”

Whenever it presses the key of [OVRD ↑ ], the override goes up. Conversely, if the [OVRD ↓ ] key is pressed, it will go down.

The current setting speed is displayed on screen upper right, and “STATUS NUMBER” of the controller.

Set the override to 10% here for confirmation work

Moving along the base coordinate system

When the[+X (J1)] keys are pressed, the robot will move along the X axis plus direction.
When the[−X (J1)] keys are pressed, move along the minus direction.

When the[+Y (J2)] keys are pressed, the robot will move along the Y axis plus direction.
When the[−Y (J2)] keys are pressed, move along the minus direction.

When the[+Z (J3)] keys are pressed, the robot will move along the Z axis plus direction.
When the[−Z (J3)] keys are pressed, move along the minus direction.

* The direction of the end axis will not change.

◇◆◇ The flange surface end axis posture cannot be maintained with 3-axis XYZ jog. ◇◆◇

With 3-axis XYZ jog, the flange surface end axis posture (orientation) is not maintained when moving linearly in the X, Y or Z axis direction.
Use XYZ jog to maintain the posture.
Changing the end axis direction

When the $[+C (J6)]$ keys are pressed, the Z axis will rotate in the plus direction.
When the $[-C (J6)]$ keys are pressed, the Z axis will rotate in the minus direction.

* The position of the end axis will not change.
(5) CYLINDER jog operation

**Select cylindrical jog mode**

<table>
<thead>
<tr>
<th>JOG</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYLNDER</td>
<td>F4 ~ F1</td>
</tr>
</tbody>
</table>

**Set jog speed**

<table>
<thead>
<tr>
<th>JOG</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYLNDER</td>
<td>OVRD ↑ OVRD ↓</td>
</tr>
</tbody>
</table>

**Moving along an arc centering on the Z axis**

Assuming that the current position is on an arc centering on the Z axis, the robot moves along that arc.

When the [+X (J1)] keys are pressed, the robot will expand in the radial direction.

When the [-X (J1)] keys are pressed, contract in the radial direction.

When the [+Y (J2)] keys are pressed, the robot will move along the arc in the plus direction.

When the [-Y (J2)] keys are pressed, move in the minus direction.

When the [+Z (J3)] keys are pressed, the robot will move along the Z axis plus direction.

When the [-Z (J3)] keys are pressed, move along the minus direction.

* The direction of the frange will not change.
Changing the end axis direction

When the [+C (J6)] keys are pressed, the Z axis will rotate in the plus direction.
When the [-C (J6)] keys are pressed, the Z axis will rotate in the minus direction.

* The position of the end axis will not change.
(6) Work jog operation

Setting of the work coordinates system is necessary. By this jog operation, robot can be move along with the direction of work (or working table etc.), so teaching operations get easier.

When jog operation, select by which work coordinates the robot moves

The setting method of the work coordinates system using T/B (R32TB) is shown in the following.

(Parameter: Setting the coordinate value to WKnCORD ("n" is meaning the number (1-8) of work coordinates) can also set up the work coordinates system. Refer to the separate manual "Detailed Explanation of Functions and Operations" for details of parameter.)

In addition, this jog operation is available at the following software versions. The below-mentioned "6.ENHANCED" menu is not displayed in the other versions.

T/B :Ver.1.3 or later
SD series :P8 or later

The work coordinates system teaches and sets up the three points (WO, WX, WY).

The jogging movement based on this work is possible.

[Supplement] : The coordinate values which use all three teaching points for setting of the work coordinates system are each only X, Y, and the Z-axis. Although the coordinate value of A, B, and C axis is not used, positioning will get easy if the XYZ jog or TOOL jog movement is effected with the same value. (The direction of the hand is the same)

Fig.2-16 : Setting of the work coordinates system (teaching point)

The setting (definition) method of the work coordinates system is shown in the following.
1) Select "6.ENHANCED" screen on the <MENU> screen.

2) Press the [2] keys in the menu screen and select "2. WORK COORD."

3) Selection of the work coordinates number
Press the [FUNCTION] keys, and display "W: JUMP" function. Press the function key corresponding to "W: JUMP"

Press numeral key [1] - [8] and specify the work coordinates number. The coordinate value of the specified work coordinates system is displayed.

4) The teaching of the work coordinates system
Teach the three points shown in Fig. 2-16. Confirm the name currently displayed on the "TEACHING POINT" at the upper right of the screen. If it differs, press the function key corresponding to each point(WO, WX, WY) to teach. Move the robot's arm by jog operation (other jogging movement), and press the function key corresponding to "TEACH."([F1]) The confirmation screen is displayed.

Specify the teaching point [WO],[WX],[WY] teaching the position [TEACH]
Presses the function key corresponding to "Yes", the robot's current position is registered, and the registered coordinates value is displayed. Operation will be canceled if the [CLOSE] key is pressed.

Teach the three points, WO, WX, and WY, by the same operation. The position data taught here is each registered into the following parameters. ("n" means the work coordinates numbers 1-8)

WO= parameter: WKnWO
WX= parameter: WKnWX
WY= parameter: WKnWY

5) Setting of work coordinates (definition)
If the function key corresponding to "DEFINE" ([F1]) is pressed, the work coordinates system will be calculated using the three points, and the result will be displayed.

The alarm occurs if the work coordinates system is incalculable. (There are the three points on the straight line, or the two points have overlapped) In this case, reset alarm and re-teach the three points. This work coordinate data is registered into parameter: WKnCORD. ("n" means the work coordinates numbers 1-8)

If the function key corresponding to "CLOSE" is pressed, it will return to the previous screen.

6) Finishing of setting the work coordinates
Press the [FUNCTION] keys, and display "CLOSE" function. Press the function key corresponding to "CLOSE". Returns to the <MENU> screen.
Although setting of work coordinates is finishing above, confirmation of work coordinates can be done by pressing the function key corresponding to "W GRID." ([F2])

Return to the previous screen by pressing the [CLOSE] ([F4]) key.

Select WORK jog mode

Confirmation and selection of the work coordinates system

Target work coordinates system

Select the work coordinates system

CAUTION  Always confirm that the number of the target work coordinates system is displayed correctly (Display of W1–W8 at the upper right of the screen)

If mistaken, the robot will move in the direction which is not meant and will cause the damage and the personal injuries.

Set jog speed

Whenever it presses the key of [OVRD(Upper arrow)], the override goes up. Conversely, if the [OVRD(Lower arrow)] key is pressed, it will go down.

The current setting speed is displayed on screen upper right, and "STATUS NUMBER" of the controller.

Set the override to 10% here for confirmation work.
The jog movement based on work coordinates system

* The direction of the end axis will not change. Move the control point with a straight line in accordance with the work coordinates system.

- When the [+X (J1)] keys are pressed, the robot will move along the X axis plus direction on the work coordinates system. When the [-X (J1)] keys are pressed, move along the minus direction.
- When the [+Y (J2)] keys are pressed, the robot will move along the Y axis plus direction on the work coordinates system. When the [-Y (J2)] keys are pressed, move along the minus direction.
- When the [+Z (J3)] keys are pressed, the robot will move along the Z axis plus direction on the work coordinates system. When the [-Z (J3)] keys are pressed, move along the minus direction.
Changing the end axis posture

* When the [+C (J6)] keys are pressed, The Z axis will rotate in the plus direction of the XYZ coordinate system. When the [-C (J6)] keys are pressed, Rotate in the minus direction.

◇◆◇ When the robot is in the transportation posture ◇◆◇
There are directions from which linear movement is not possible from the transportation posture. In this case, the robot will not move. Refer to section page 23, "(1) JOINT jog operation" , and move the robot to a position where linear movement is possible, and then carry out XYZ jog.

◇◆◇ If the buzzer of T/B sounds and the robot does not move ◇◆◇
If it is going to move the robot across the operation range, the buzzer of T/B sounds and the robot does not move. In this case, please move to the counter direction.

◇◆◇ Tool length ◇◆◇
The default tool length is 0mm, and the control point is the center of the end axis.
After installing the hand, set the correct tool length in the parameters. Refer to the separate manual "Detailed Explanation of Functions and Operations" for details.
3 Installing the option devices

3.1 Installing the solenoid valve set (1A-VD04-RP/1A-VD04E-PR)

The procedures for installing the solenoid valve and connecting the connector are shown in Fig. 3-1. The installation procedures are as follow.

1) Using the tool installation screw holes (M4 screws; 6 places) on the top of the shoulder cover, install the plate 3 onto which the solenoid valve is installed.
2) Connect the user-prepared air hose φ6 to the quick-coupling (P port) 4 of the solenoid valve.
3) Remove the grommet base 5 installed on the top of the shoulder cover.
4) Using a knife, cut the center of the grommet on the removed grommet base 5. Pass the solenoid valve side connector through the hole, and connect to the connector (GR) installed on the connector base.
5) Return the grommet base 5 to its original position.
4 Basic operations

The basic operations from creating the program to automatic operation are explained in section “4. Basic operations” in the “Controller setup, basic operation, and maintenance” manual. Refer that manual as necessary.
5 Maintenance and Inspection

The maintenance and inspection procedures to be carried out to use the robot for a long time without trouble are described in this chapter. The types and replacement methods of consumable parts are also explained.

5.1 Maintenance and inspection interval

Maintenance and inspection are divided into the inspections carried out daily, and the periodic inspections carried out at set intervals. Always carry these out to prevent unforeseen trouble, to maintain the product for a long time, and to secure safety.

(1) Inspection schedule
In addition to the monthly inspection, add the following inspection items every three months (estimated at 500 Hr operation hours).

<table>
<thead>
<tr>
<th>Operating time</th>
<th>Monthly inspection</th>
<th>3-month inspection</th>
<th>6-month inspection</th>
<th>Yearly inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 Hr</td>
<td>Monthly inspection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 Hr</td>
<td>Monthly inspection</td>
<td>3-month inspection</td>
<td>6-month inspection</td>
<td></td>
</tr>
<tr>
<td>1500 Hr</td>
<td>Monthly inspection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 Hr</td>
<td>Monthly inspection</td>
<td>3-month inspection</td>
<td>6-month inspection</td>
<td></td>
</tr>
<tr>
<td>12000 Hr</td>
<td>Monthly inspection</td>
<td>3-month inspection</td>
<td>6-month inspection</td>
<td>6-years inspection</td>
</tr>
</tbody>
</table>

<Guideline for inspection period>
For one shift
8 Hr/day x 20 days/month x 3 months = approx. 500 Hr
10 Hr/day x 20 days/month x 3 months = approx. 600 Hr

For two shifts
15 Hr/day x 20 days/month x 3 months = approx. 1000 Hr

[Caution] When using two lines, the 3-month inspection, 6-month inspection and yearly inspection must be carried out when half the time has passed.

Fig.5-1 : Inspection schedule
5.2 Inspection items
The inspection items for the robot arm are shown below. Also refer to section “5 Maintenance and Inspection” in the “Controller setup, basic operation, and maintenance” manual, and inspect the controller.

5.2.1 Daily inspection items
Carry out the daily inspections with the procedures given in Table 5-1.

Table 5-1: Daily inspection items (details)

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Inspection item (details)</th>
<th>Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Before turning power ON</strong> (Check the following items before turning the power ON.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Are any of the robot installation bolts loose?</td>
<td>(Visual) Securely tighten the bolts.</td>
</tr>
<tr>
<td>2</td>
<td>Are any of the cover tightening screws loose?</td>
<td>(Visual) Securely tighten the screws.</td>
</tr>
<tr>
<td>3</td>
<td>Are any of the hand installation bolts loose?</td>
<td>(Visual) Securely tighten the bolts.</td>
</tr>
<tr>
<td>4</td>
<td>Is the power supply cable securely connected?</td>
<td>(Visual) Securely connect.</td>
</tr>
<tr>
<td>5</td>
<td>Is the machine cable between the robot and controller securely connected?</td>
<td>(Visual) Securely connect.</td>
</tr>
<tr>
<td>6</td>
<td>Are there any cracks, foreign contamination or obstacles on the robot and controller cover?</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Is any grease leaking from the robot arm?</td>
<td>(Visual) After cleaning, replenish the grease.</td>
</tr>
<tr>
<td>8</td>
<td>Is there any abnormality in the pneumatic system? Are there any air leaks, drain clogging or hose damage? Is the air source normal?</td>
<td>(Visual) Drain the drainage, and remedy the air leaks (replace the part).</td>
</tr>
<tr>
<td><strong>After turning the power ON</strong> (Turn the power ON while monitoring the robot.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Is there any abnormal motion or abnormal noise when the power is turned ON?</td>
<td></td>
</tr>
<tr>
<td><strong>During operation (try running with an original program)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Check whether the movement points are deviated?</td>
<td></td>
</tr>
<tr>
<td>Check the following points if there is any deviation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Are any installation bolts loose?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Are any hand installation section bolts loose?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Are the positions of the jigs other than the robot deviated?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. If the positional deviation cannot be corrected, refer to “Troubleshooting”, check and remedy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Is there any abnormal motion or abnormal noise?</td>
<td>(Visual) Follow the troubleshooting section.</td>
</tr>
</tbody>
</table>
5.2.2 Periodic inspection

Carry out periodic inspection with the procedures given in Table 5-2.

Table 5-2: Periodic inspection items (details)

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Inspection item (details)</th>
<th>Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Monthly inspection items</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Are any of the bolts or screws on the robot arm loose?</td>
<td>Securely tighten the bolts.</td>
</tr>
<tr>
<td>2</td>
<td>Are any of the connector fixing screws or terminal block terminal screws loose?</td>
<td>Securely tighten the screws.</td>
</tr>
<tr>
<td>3</td>
<td>Remove the cover at each section, and check the cables for wear damage and adherence of foreign matter.</td>
<td>Check and eliminate the cause. If the cables are severely damaged, contact the Mitsubishi Service Department.</td>
</tr>
<tr>
<td>4</td>
<td>It runs out of grease on the ball screw?</td>
<td>Lubricate it. (The grease)</td>
</tr>
<tr>
<td><strong>3-month inspection items</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Is the timing belt tension abnormal?</td>
<td>If the timing belt is loose or too tense, adjust it.</td>
</tr>
<tr>
<td><strong>6-month inspection items</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Is the friction at the timing belt teeth severe?</td>
<td>If the teeth are missing or severe friction is found, replace the timing belt.</td>
</tr>
<tr>
<td><strong>Yearly inspection items</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Replace the backup battery in the robot arm.</td>
<td></td>
</tr>
<tr>
<td><strong>6-years inspection items</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Lubricate the grease at the harmonic reduction gears for each axis.</td>
<td></td>
</tr>
</tbody>
</table>
5.3 Maintenance and inspection procedures

The procedures for carrying out the periodic maintenance and inspection are described in this section. Thoroughly read the contents, and follow the instructions. This work can be commissioned to the Mitsubishi Service Department for a fee. (Never disassemble, etc., the parts not described in this manual.)

The maintenance parts, etc., required for the user to carry out maintenance and inspection are described in section "5.4 Maintenance parts" on page 59 of this manual. Always contact your dealer when parts are needed.

⚠️ CAUTION ⚠️

The origin of the machine system could deviate when this work is carried out. "Review of the position data" and "re-teaching" will be required.

5.3.1 Robot arm structure

![Diagram of robot arm structure]

Fig.5-2 : Outline structure of robot arm
(1) J1 axis
The rotation of the J1 axis motor 1 installed on the base, is conveyed through the timing belt 2 to the reduction gears 3 to drive the J1 axis.
Non-excitation magnetic brakes are mounted on the J1 axis motor 1.

(2) J2 axis
The rotation of the J2 axis motor 4 installed on the base, is conveyed through the timing belt 5 to the reduction gears 6 to drive the J2 axis.
As with the J1 axis, non-excitation magnetic brakes are mounted on the J2 axis motor 4.

(3) J3 axis
The rotation of the J3 axis motor 7 installed on the base is conveyed through the timing belt 18, timing belt 29 and timing belt 310, to the ball screw nut of the ball screw spline 15 to drive the J3 axis vertically. As with the J1 axis, non-excitation magnetic brakes are mounted on the J3 axis motor 7.

(4) J4 axis
The rotation of the J4 axis motor 11 installed on the base is conveyed through the timing belt 112, timing belt 213 and timing belt 314, to the spline nut of the ball screw spline 15 to drive the J4 axis.
5.3.2 Installing/removing the cover

(1) Refer to Fig. 5-3 and remove the cover. A list of the cover installation screw is given in the drawing.
(2) When installing the cover after maintenance and inspection, install using the removal procedure in reverse.
5.3.3 Inspecting, servicing, replacing and cleaning the timing belt

This robot uses a timing belt for the drive conveyance system. Compared to gears and chains, the timing belt does not require lubrication and has a low noise. However, if the belt usage method and tension adjustment are inadequate, the life could drop and noise could be generated. Sufficient aging to remove the initial elongation of the belt, and adjustment of the belt tension have been carried out before shipment from the factory. However, depending on the robot working conditions, elongation will occur gradually over a long time. The tension must be confirmed during the periodic inspection. The timing belt must be replaced in the following cases.

(1) Timing belt replacement period

The timing belt life is greatly affected by the robot working conditions, so a set time cannot be given. However, if the following symptoms occur, replace the belt.

1) When cracks form at the base or back of the belt teeth.
2) When the belt expands due to adherence of oil, etc.
3) When the belt teeth wear (to approx. half of the tooth width).
4) When the belt teeth jump due to belt teeth wear.
5) When the belt snaps.

⚠️ CAUTION  Due to the manufacturing of the timing belt, initial wear will occur. Wear chips may accumulate in the cover after approx. 300 Hr of operating the robot, but this is not a fault. If the wear chips appear soon after wiping them off, replace the belt.

⚠️ CAUTION  When the belt is replaced, the origin of the machine system could deviate. In this case, review the position data.
(2) Inspecting, adjusting and replacing the upper base timing belt

**Fig.5-4 : Inspecting, adjusting and replacing the upper base timing belt**

- **Inspection method**
  1) Confirm that the robot controller power is OFF.
  2) Following “Fig. 5-3: Installing/removing the cover” on page 46 remove the shoulder cover.
  3) Visually check that the symptoms listed in “(1) Timing belt replacement period” on page 47 above have not occurred on the belt.
  4) Refer to “(6) Timing belt tension” on page 53 for the belt tension, and confirm that the belt deflection is adequate.

- **Adjustment method**
  1) Carry out steps 1) and 2) in the “ ■ Inspection method” above.
  2) Loosen the two idler screws 1. (Do not loosen too far.)
  3) While checking the timing belt 2 tension degree, move the idler 5 in the direction of the arrow in the drawing until it is at the adequate tension position given in “(6) Timing belt tension” on page 53.
  4) When moved in the direction of arrow a in the drawing, the belt will be tensed, and when moved in the direction of arrow b, the belt will be loosened.
  5) Do not loosen the belt too much causing it to come off the timing pulleys 3 and 4, or deviate the belt and pulley teeth engagement when adjusting the tension. Doing so could cause the machine system’s origin to deviate.
  6) After adjusting, securely tighten the two idler installation screws 1. If the idler is improperly tightened, it could loosen due to vibration.
  7) Adjust the other belt with the same method.

- **Replacement method**
  1) Carry out steps 1) and 2) in the “ ■ Inspection method” above.
  2) Loosen the two idler installation screws 1.
  3) Remove the old belt, and install a new one.
  4) Move the idler 5 in the direction of the arrow in the drawing until it is at the adequate tension position given in “(6) Timing belt tension” on page 53.
  5) After replacing the belt, refer to “5.5 Resetting the origin” on page 61, and reset the origin.
(3) Inspecting, adjusting and replacing the lower base timing belt

![Diagram of lower base timing belt components]

**Inspection method**

1) Move the robot to near the following position by jog operation.
   - Position: RP-1ADH-S15 \(\ldots (X,Y,Z) = (95,0,0)\)
   - RP-3ADH-S15, RP-5ADH-S15 \(\ldots (X,Y,Z) = (175,0,0)\)
2) Turn the robot controller power OFF.
3) Referring to Fig. 5–5, install so that the robot arm installation surface faces upward.
   - Take special care so that the load is not applied on the ball screw spline axis when the robot is tilted.
4) Following “Fig. 5–3: Installing/removing the cover” on page 46, remove the base cover D.
5) Visually check that the symptoms listed in “(1) Timing belt replacement period” on page 47 above have not occurred on the belt.
6) Refer to “(6) Timing belt tension” on page 53” for the belt tension, and confirm that the belt deflection is adequate.

**Adjustment method**

1) Carry out steps 1) and 2) in the “**Inspection method**” above.
2) Loosen the two idler screws 1. (Do not loosen too far.)
3) While checking the timing belt 2 tension degree, move the idler 5 in the direction of the arrow in the drawing until it is at the adequate tension position given in “(6) Timing belt tension” on page 53.
4) When moved in the direction of arrow a in the drawing, the belt will be tensed, and when moved in the direction of arrow b, the belt will be loosened.
5) Do not loosen the belt too much causing it to come off the timing pulleys 3 and 4, or deviate the belt and pulley teeth engagement when adjusting the tension. Doing so could cause the machine system’s origin to deviate.
6) After adjusting, securely tighten the two idler installation screws 1. If the idler is improperly tightened, it could loosen due to vibration.
7) Adjust the other belt with the same method.

**Replacement method**

1) Carry out steps 1) and 2) in the “**Inspection method**” above.
2) Loosen the two idler screws 1.
3) Remove the old belt, and install a new one.
4) Move the idler 5 in the direction of the arrow in the drawing until it is at the adequate tension position given in “(6) Timing belt tension” on page 53.
5) After replacing the belt, refer to “5.5 Resetting the origin” on page 61, and reset the origin.
(4) Inspecting, adjusting and replacing the timing belt in No. 1 arm

![Diagram](image.png)

(a) Inspecting, adjusting and replacing methods

(b) Removing the shaft

[Caution]
This drawing shows the timing belt for the J4 axis. The J3 axis timing belt is also mounted with the same structure under the No. 1 arm R on the opposite side.

Fig. 5-6 : Inspecting, adjusting and replacing the timing belt in No. 1 arm
5 Maintenance and Inspection

- Inspection method
  1) Confirm that the robot controller power is OFF.
  2) Following “Fig. 5-3: Installing/removing the cover” on page 46, remove the No. 1 arm covers (L) and (R).
  3) Visually check that the symptoms listed in “(1) Timing belt replacement period” on page 47 above have not occurred on the belt.
  4) Refer to “(6) Timing belt tension” on page 53 for the belt tension, and confirm that the belt deflection is adequate.

- Adjustment method
  1) Carry out steps 1) and 2) in the “Inspection method” above.
  2) Loosen the two idler screws 1. (Do not loosen too far.)
  3) While checking the timing belt 2 tension degree, move the idler 3 in the direction of the arrow in the drawing until it is at the adequate tension position given in “(6) Timing belt tension” on page 53.
  4) When moved in the direction of arrow a, the belt will be tensed, and when moved in the direction of arrow b, the belt will be loosened.
  5) Do not loosen the belt too much causing it to come off the timing pulleys 4 and 5, or deviate the belt and pulley teeth engagement when adjusting the tension. Doing so could cause the machine system’s origin to deviate.
  6) After adjusting, securely tighten the two idler installation screws 1. If the idler is improperly tightened, it could loosen due to vibration.

- Replacement method
  1) Carry out steps 1) and 2) in the “Inspection method” above.
  2) Loosen the two idler screws 1.
  3) Refer to “(2) Inspecting, adjusting and replacing the upper base timing belt” on page 48, and remove the timing belt on the upper base.
  4) Remove the two 7 installation screws for the 6 pulley housing fixing the pulley on the front of the robot at the upper base.
  5) Pull the shaft installed on the pulley in the direction of the arrow in the drawing, and remove the belt. (If the shaft is rigid and cannot be removed, screw the 7 installation screws, removed previously, into the two 8 M3 screw holes, and tighten each equally. The pulley housing will come off easier.)
  6) Install the new timing belt. Also install the timing belt on the upper base.
  7) Adjust the tension referring to “(6) Timing belt tension” on page 53.
  8) After replacing the belt, refer to “5.5 Resetting the origin” on page 61, and reset the origin.
(5) Inspecting, adjusting and replacing the timing belt in No. 2 arm

![Diagram of No. 2 arm R with parts labeled: 1. Idler installation screw, M3 x 8 (hexagon socket screw), 2. Timing belt (J3), 5. Timing pulley, No. 2 arm R, 3. Idler, 4. Timing pulley, b]

**Inspection method**

1) Confirm that the robot controller power is OFF.
2) Following “Fig. 5-3: Installing/removing the cover” on page 46, remove the No. 1 arm cover (L) and (R).
3) Visually check that the symptoms listed in “(1) Timing belt replacement period” on page 47 above have not occurred on the belt.
4) Refer to “(6) Timing belt tension” on page 53 for the belt tension, and confirm that the belt deflection is adequate.

**Adjustment method**

1) Carry out steps 1) and 2) in the “Inspection method” above.
2) Loosen the two idler screws 1. (Do not loosen too far.)
3) While checking the timing belt 2 tension degree, move the idler 3 in the direction of the arrow in the drawing until it is at the adequate tension position given in “(6) Timing belt tension” on page 53”.
4) When moved in the direction of arrow a in the drawing, the belt will be tensed, and when moved in the direction of arrow b, the belt will be loosened.
5) Do not loosen the belt too much causing it to come off the timing pulleys 4 and 5, or deviate the belt and pulley teeth engagement when adjusting the tension. Doing so could cause the machine system’s origin to deviate.
6) After adjusting, securely tighten the two idler installation screws 1. If the idler is improperly tightened, it could loosen due to vibration.

**Replacement method**

1) Carry out steps 1) and 2) in the “Inspection method” above.
2) Loosen the two idler screws 1.
3) Remove the old belt and install a new one.
4) Adjust the tension referring to “(6) Timing belt tension” on page 53.
5) After replacing the belt, refer to “5.5 Resetting the origin” on page 61, and reset the origin.
(6) Timing belt tension

The timing belt can satisfactorily convey the drive and keep a durable force only when it has an adequate tension. The belt tension should not be too tight or too loose. Instead, it should be adjusted to a degree that elasticity is felt when the belt is pressed with the thumb. If the belt tension is too weak, (Range of adjustment of slack: ±10% of the value) the belt loosening side will vibrate. On the other hand, if the belt tension is too strong, a sharp sound will be heard and the belt tension side will vibrate. If tension adjustment is inadequate, there is a possibility that the position deviates, the belt wears out early, and the bearing which supports the belt breaks down. Please note.

The adjustment value for the tension degree is shown in Fig. 5-8.

Check and adjust with the belt pressing force \( f \) and the slack amount \( d \) between span \( s \).
5.3.4 Lubrication
(1) Lubrication positions and specifications

[Caution]
* The brands of grease given in Table 5-3 are those filled when the robot is shipped.
* The lubrication time is a cumulative value of the operation at the maximum speed. If the operation is intermittent, or if the designated speed is slow, the lubrication time can be lengthened in proportion.
* Depending on the robot operation state, the lubrication time will fluctuate, so determine the time according to the state so that the grease does not run out.
* The numbers in the above table correspond to the supply positions in Fig. 5-9.
(2) Lubrication method of J1, J2 axis reduction gears
   1) Set the robot to the posture shown in Fig. 5-9. Take care not to put the ball screw spline axis near the grease lubrication port at this time.
   2) Remove the embedded plug shown in Fig. 5-9.
   3) Remove the air bleed bolt.
   4) Insert the grease shown in Table 5-4 using a grease gun from the lubrication grease nipple.
   5) Install the air bleed bolt.
   6) Install the embedded plugs using the procedure in reverse.

   [Note] Check the timing belt of 6-month inspection items together. At this time, confirm the grease doesn’t leak out. Please lubricate a regulated amount of grease. If the amount of the grease lubricating is too much, grease might leak. Please confirm the amount of discharge of a grease gun beforehand. Wipe it out beautifully when the grease leak out and it sticks to the timing belt, and so on.

(3) Lubrication method of ball screw spline
   1) Release the brake of J3 axis, and move up until the lower stopper of the ball screw spline interferes in the cover.
      Refer to the separate “Instruction Manual/Detailed Explanation of Functions and Operations” for the method of releasing the brake.
   2) Turn off the controller’s power supply and wipe the old grease on the exposed ball screw spline, and then paint the grease shown in the Table 5-3.
   3) Turn on the controller’s power supply and release the brake of J3 axis, and move down until the upper stopper of the ball screw spline interferes in the cover, and let applied grease get used. Wipe out the grease left after it got used.
   4) Turn off the controller’s power supply and wipe the old grease on the exposed ball screw spline, and then paint the grease shown in the Table 5-3.
   5) Turn on the controller’s power supply and release the brake of J3 axis, and move up until the lower stopper of the ball screw spline interferes in the cover, and let applied grease get used. Wipe out the grease left after it got used.
5.3.5 Replacing the backup battery

An absolute encoder is used for the position detector, so the position must be saved with the backup battery when the power is turned OFF. The controller also uses a backup battery to save the program, etc. These batteries are installed when the robot is shipped from the factory, but as these are consumable parts, they must be replaced periodically by the customer.

The guideline for replacing the battery is one year, but this will differ according to the robot’s usage state.

**Error No. 7520**: Battery consumption time is over
**Error No. 133n**: Encoder battery voltage low. (n indicates the axis number.)
(The encoder battery voltage of the robot arm is low.)
**Error No. 7510**: Battery voltage low (R/C)
(The battery voltage of the controller is low.)
**Error No. 7500**: No battery voltage
(The battery of the controller is depleted.)

⚠️ **CAUTION**

If error No. 7500 occurs, the program data and other data in the controller is lost and it becomes necessary to load the data again.

If any of the battery-related errors above occur and the robot continues to be used, the data integrity of the memory cannot be guaranteed. If an error occurs, replace the batteries of both the robot arm and controller promptly.

It is also recommended to save programs and position data on the personal computer side via the personal computer support software and so forth in advance.
(1) Replacing the robot arm battery

⚠️ CAUTION

Don’t disconnect connector, etc. While replacing the battery, the encoder position data is saved by the power supplied from the controller. Thus, if the cable connection is incomplete, the encoder position data will be lost when the controller power is turned OFF. Several batteries are used in the robot arm, but replace all old batteries with new batteries at the same time.

1) Check that the cable between the robot unit’s connector box and controller is securely connected.

2) Turn the controller power ON.

While replacing the battery, the position data is saved by the power supplied from the controller. Thus, if the cable connection is incomplete or if the controller power is OFF, the position data will be lost.

3) Press the emergency stop button to place the robot in the emergency stop state. This must be carried out for safety purposes.

4) Remove the installation screws 2 shown in Fig. 5–10, and remove the connector box cover 1.

5) There is a battery holder in the connector box 3. Remove the old battery from the holder, and disconnect the lead connector.

6) Insert the new battery into the holder, and connect the lead connector. Make sure to replace all batteries with new ones.

7) Install the connector box cover 1 with the above steps in reverse.

8) Initialize the battery consumption time.

Always carry out this step after replacing the battery, and initialize the battery usage time. Refer to the separate “Instruction Manual/Detailed Explanation of Functions and Operations” for details on the operation methods.
The encoder position data will be lost if the battery does not function correctly due to a disconnected connector, etc. While replacing the battery, the encoder position data is saved by the power supplied from the controller. Thus, if the cable connection is incomplete, the encoder position data will be lost when the controller power is turned OFF.

**CAUTION**
5.4 Maintenance parts

The consumable parts that must be replaced periodically are shown in Table 5-4, and spare parts that may be required during repairs are shown in Table 5-5. Purchase these parts from the dealer when required. Some Mitsubishi-designated parts differ from the maker’s standard parts. Thus, confirm the part name, robot arm and controller serial No. and purchase the parts from the dealer.

Table 5-4: Consumable part list

<table>
<thead>
<tr>
<th>No.</th>
<th>Part name</th>
<th>Type</th>
<th>Q’ty</th>
<th>Usage place</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lithium battery</td>
<td>A6BAT</td>
<td>3</td>
<td>Connector box</td>
<td>Mitsubishi Electric</td>
</tr>
<tr>
<td>2</td>
<td>Grease</td>
<td>Harmonic grease 4 BN o.2</td>
<td>An needed</td>
<td>Reduction gears of J1, J2 axis</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Marutenpu PS No.2</td>
<td>An needed</td>
<td>Ball screw spline</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note1) Confirm the robot arm serial No., and contact the dealer or service branch of Mitsubishi Electric Co., for the type.

Table 5-5: Spare parts list

<table>
<thead>
<tr>
<th>No.</th>
<th>Part name</th>
<th>Type</th>
<th>Q’ty</th>
<th>Usage place</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Timming belt</td>
<td>3 27 – 3 GT – 9</td>
<td>1</td>
<td>Shoulder cover</td>
<td>Mitsubishi Electric</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3 63 – 3 GT – 9</td>
<td>1</td>
<td>Shoulder cover</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2 46 – 3 GT – 9</td>
<td>2</td>
<td>Base</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3 15 – 3 GT – 9</td>
<td>1</td>
<td>No.1 arm L</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2 70 – 3 GT – 9</td>
<td>1</td>
<td>No.1 arm R</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>3 93 – 3 GT – 6</td>
<td>1</td>
<td>No.2 arm L</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>3 82 – 2 GT – 4</td>
<td>1</td>
<td>No.2 arm R</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>AC servo motor</td>
<td>BU149C707G61</td>
<td>1</td>
<td>J1 axis</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>BU149C707G62</td>
<td>1</td>
<td>J2 axis</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>BU149C707G63</td>
<td>1</td>
<td>J3 axis</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>BU149C707G64</td>
<td>1</td>
<td>J4 axis</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>AC servo motor</td>
<td>BU149C660G51</td>
<td>1</td>
<td>J1 axis</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>BU149C660G52</td>
<td>1</td>
<td>J2 axis</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>BU149C660G53</td>
<td>1</td>
<td>J3 axis</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>BU149C660G54</td>
<td>1</td>
<td>J4 axis</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Reduction gears</td>
<td>BU146C911H03</td>
<td>2</td>
<td>J1, J2 axis</td>
<td></td>
</tr>
</tbody>
</table>

Type: RP-3ADH-S15

<table>
<thead>
<tr>
<th>No.</th>
<th>Part name</th>
<th>Type</th>
<th>Q’ty</th>
<th>Usage place</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Timming belt</td>
<td>4 44 – 3 GT – 9</td>
<td>2</td>
<td>Shoulder cover.No.1 arm L</td>
<td>Mitsubishi Electric</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5 13 – 3 GT – 9</td>
<td>1</td>
<td>Shoulder cover</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3 18 – 3 GT – 12</td>
<td>2</td>
<td>Base</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3 75 – 3 GT – 9</td>
<td>1</td>
<td>No.1 arm R</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5 58 – 3 GT – 9</td>
<td>1</td>
<td>No.2 arm L</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5 43 – 3 GT – 9</td>
<td>1</td>
<td>No.2 arm R</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Part name</td>
<td>Type</td>
<td>Q'ty</td>
<td>Usage place</td>
<td>Supplier</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------</td>
<td>-----------------</td>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>7</td>
<td>AC servo motor</td>
<td>BU149C674G61</td>
<td>1</td>
<td>J1 axis</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(In the case of serial No. less than &quot;AB002031&quot;)</td>
<td>BU149C674G62</td>
<td>1</td>
<td>J2 axis</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>BU149C674G63</td>
<td>1</td>
<td>J3 axis</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>BU149C707G64</td>
<td>1</td>
<td>J4 axis</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>AC servo motor</td>
<td>BU149C674G51</td>
<td>1</td>
<td>J1 axis</td>
<td>Mitsubishi Electric</td>
</tr>
<tr>
<td>12</td>
<td>(In the case of serial No. is &quot;AB002031&quot; or more.)</td>
<td>BU149C674G52</td>
<td>1</td>
<td>J2 axis</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>BU149C674G53</td>
<td>1</td>
<td>J3 axis</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>BU149C660G54</td>
<td>1</td>
<td>J4 axis</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Reduction gears</td>
<td>BU146C785H01</td>
<td>2</td>
<td>J1, J2 axis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Part name</th>
<th>Type</th>
<th>Q'ty</th>
<th>Usage place</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Timing belt</td>
<td>444-3GT-9</td>
<td>1</td>
<td>Shoulder cover</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>513-3GT-9</td>
<td>1</td>
<td>Shoulder cover</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>318-3GT-12</td>
<td>2</td>
<td>Base</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>561-3GT-9</td>
<td>1</td>
<td>No.1 arm L</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>495-3GT-9</td>
<td>1</td>
<td>No.1 arm R</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>681-3GT-9</td>
<td>1</td>
<td>No.2 arm L</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>666-3GT-9</td>
<td>1</td>
<td>No.2 arm R</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>AC servo motor</td>
<td>BU149C674G61</td>
<td>1</td>
<td>J1 axis</td>
<td>Mitsubishi Electric</td>
</tr>
<tr>
<td>9</td>
<td>(In the case of serial No. less than &quot;AB002052&quot;)</td>
<td>BU149C674G62</td>
<td>1</td>
<td>J2 axis</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>BU149C674G63</td>
<td>1</td>
<td>J3 axis</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>BU149C707G64</td>
<td>1</td>
<td>J4 axis</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>AC servo motor</td>
<td>BU149C674G51</td>
<td>1</td>
<td>J1 axis</td>
<td>Mitsubishi Electric</td>
</tr>
<tr>
<td>13</td>
<td>(In the case of serial No. is &quot;AB002052&quot; or more.)</td>
<td>BU149C674G52</td>
<td>1</td>
<td>J2 axis</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>BU149C674G53</td>
<td>1</td>
<td>J3 axis</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>BU149C660G54</td>
<td>1</td>
<td>J4 axis</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Reduction gears</td>
<td>BU146C785H01</td>
<td>2</td>
<td>J1, J2 axis</td>
<td></td>
</tr>
</tbody>
</table>
5.5 Resetting the origin

The origin is set so that the robot can be used with a high accuracy. After purchasing the robot, always carry out this step before starting work. The origin must be reset if the combination of robot and controller being used is changed or if the motor is changed causing an encoder area.

The types of origin setting methods are shown in Table 5-6.

Table 5-6 : Origin setting method

<table>
<thead>
<tr>
<th>No</th>
<th>Method</th>
<th>Explanation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Origin data input method</td>
<td>The origin data set as the default is input from the T/B.</td>
<td>The setting method is explained in “2.3 Setting the origin” on page 13.</td>
</tr>
<tr>
<td>2</td>
<td>Jig method</td>
<td>The transportation jig is installed, and the transportation posture is set as the origin posture.</td>
<td>The setting method is explained in “5.5.1 Jig method” on page 61.</td>
</tr>
<tr>
<td>3</td>
<td>User origin method</td>
<td>A randomly designated position is set as the origin posture.</td>
<td>Before using this method, the origin must be set with the origin data input method (No. 1 above) or jig method (No. 2 above). The setting method is explained in “5.5.2 User origin method” on page 64.</td>
</tr>
</tbody>
</table>

5.5.1 Jig method

The method for setting the origin with the transportation jig is explained below.

This operation is carried out with the teaching pendant. Set the [MODE] switch on the front of the controller to "MANUAL"., and set the [ENABLE] switch on the teaching pendant to "ENABLE" to enable the teaching pendant. Do the following operations, pressing down the enabling switch of T/B lightly. Move the J4 axis to the upper end with jog operation beforehand.


3) Release the brake of all axes. Input “1” into the J1-J4 axis.

4) Confirm the axis for which the brakes are to be released.

5) Pressing the [F1] key is kept with the enabling switch of T/B pressed down. The brake is released while pressing the key.
6) Origin posture of the robot arm is shown in the following.
The brake of each axis is released, and the end axis is fixed with the transportation jig.
The process is shown in the following.

- a) The transportation jig A (or, D) is pressed against to the installation surface.
- b) The transportation jig A (or, D) is pressed against to the left side of the jig installation section on front of the robot arm as it is.
- c) The transportation jig A (or, D) is fixed securely with the fixing bolts under this condition.
- d) Release the brakes of all axis, and take the end axis of the robot to the V-cut position of the transportation jig A (or, D).
- e) As it is, lower an end axis until the standard position of Z-axis hits a transportation jig A (or, D).
- f) Install the transportation jig B. Tighten the fixing bolts gradually with releasing of brake.
- g) Tighten the central screw of the transportation jig B with releasing of brake.
Resetting the origin

7) Detach the [F1] key and work the brake. Press the [F4] key and return to the origin / brake screen.

8) Press the [1] key, and display the Origin setting selection screen.


10) Input “1” into the J1-J4 axis. Set “0” to other axes.

11) Press the [EXE] key, and display Confirmation screen.

12) Press the [F1] key, and the origin position is set up.

13) Setting of the origin is completed.

14) Refer to “5.5.3 Recording the origin data” on page 65 in this manual, and record the origin data on the origin data seal.

Release the brake

Do cursor movement into the parenthesis of each axis by the arrow key. The brakes can be released only for the axis for which a “1” is displayed on the screen. If the brakes are not to be released, press the [0] key and display a “0”. If the [F1] key on the teaching pendant or the enabling switch is detached while the brakes are released, the brakes will be work immediately.

Select the axis of origin setting

Do cursor movement into the parenthesis of each axis by the arrow key. The origin is set only for the axis for which a “1” is displayed on the screen. If the origin is not to be set, press the [0] key and display a “0”.

Complete brake release

- J1: 1 J2: 0 J3: 0 J4: 0
  - J5: 0 J6: 0 J7: 0 J8: 0

- J1: 1 J2: 0 J3: 0 J4: 0
  - J5: 0 J6: 0 J7: 0 J8: 0

- J1: 1 J2: 0 J3: 0 J4: 0
  - J5: 0 J6: 0 J7: 0 J8: 0
5.5.2 User origin method

⚠️ CAUTION Before using this method, the origin must be set with the other method. The setting method is explained in “Table 5–6: Origin setting method” on page 61.

The procedure for setting the origin with the user origin method is explained below.
This operation is carried out with the teaching pendant. Set the [MODE] switch on the front of the controller to “ANNUAL”, and set the [ENABLE] switch on the teaching pendant to “ENABLE” to enable the teaching pendant. The operation method is shown below.

When setting the origin for the first time using this method, carry out the operations in order from step 1). For the second and following time, move the robot arm to the user origin position with jog operation, and accurately position all axes. Then start the procedure from step 4).

1) Determine the user origin position
   Move the robot to the position to be set as the origin with jog operation. Refer to “2.4 Confirming the operation” on page 19 for details on the jog operation.

⚠️ CAUTION Choose the user origin position as the position where it doesn’t move by the gravity. This position is left as a guideline to position all axes with jog operation when setting the origin again with this method.

2) Enter the JOINT jog mode, and display the joint coordinates on the teaching pendant screen. Record the value of the axis for which the origin is to be set.
3) Input the value recorded in the “user designated origin parameter (USRORG)”.
   The parameter details and input methods are described in the separate “Instruction Manual/Detailed Explanation of Functions and Operations”. Refer to that manual and input the user designated origin position.

4) Next, set the origin.
   Display the menu screen.


6) Press the [1] key, and display the Origin setting selection screen.

5.5.3 Recording the origin data

When the origin has been set with the jig method, record that origin data on the origin data label. With this, the origin can be set with the origin data input method the next time.

Confirm the origin data on the teaching pendant screen (origin data input screen). The origin data label is enclosed with the arm or attached on the back of the connector box cover.

The teaching pendant operation method and connector box cover removal method for confirming the origin data is the same as the methods for setting the origin with the origin data input method. Refer to “2.3.2 Setting the origin with the origin data input method” on page 14, and write the origin data displayed on the teaching pendant onto the origin label.

1) Confirming the origin data label
Remove the connector box cover.
Refer to “5.3.5 Replacing the backup battery” on page 56, and remove the connector box cover.

2) Confirming the origin data
Confirm the value displayed on the teaching pendant’s Origin Data Input screen.
Refer to “(5) Inputting the origin data” on page 17, and display the Origin Data Input screen on the teaching pendant display screen.

3) Recording the origin data
Write the origin data displayed on the teaching pendant to the origin data label attached to the back of the connector box cover. Refer to “Fig. 2-6: Connecting the machine cables” on page 12, and “Fig. 2-7: Installing and removing the T/B” on page 13 for details on the origin data label.

4) Installing the connector box cover
Install the connector box cover removed in step “(1) Confirming the origin data label” above.
Refer to “5.3.5 Replacing the backup battery” on page 56, and replace the connector box cover.

This completes the recording of the origin data.
<table>
<thead>
<tr>
<th>HEADQUARTERS</th>
<th>EUROPE</th>
<th>EUROPEAN REPRESENTATIVES</th>
<th>MIDDLE EAST REPRESENTATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MITSUBISHI ELECTRIC EUROPE B.V.</td>
<td>EUROPE</td>
<td>EUROPEAN REPRESENTATIVES</td>
<td>MIDDLE EAST REPRESENTATIVE</td>
</tr>
<tr>
<td>German Branch</td>
<td></td>
<td></td>
<td>I.C. SYSTEMS LTD.</td>
</tr>
<tr>
<td>Gothaer Straße 8</td>
<td></td>
<td></td>
<td>23 Al-Saad Al-Ale St.</td>
</tr>
<tr>
<td>D-40880 Ratingen</td>
<td></td>
<td></td>
<td>EG Sarayat, Maadi, Cairo</td>
</tr>
<tr>
<td>Phone: +49 (0)2102 / 486-0</td>
<td></td>
<td></td>
<td>Phone: +20 (0) 2 / 235 98 548</td>
</tr>
<tr>
<td>Fax: +49 (0)2102 / 486-1120</td>
<td></td>
<td></td>
<td>EGYPT</td>
</tr>
<tr>
<td>MITSUBISHI ELECTRIC EUROPE B.V.-org.d. Czech Branch</td>
<td>Avenir Business Park, Radlicka 714/113a</td>
<td></td>
<td>ILAN &amp; GAVISH Ltd.</td>
</tr>
<tr>
<td></td>
<td>CZ-154-00 Praha 5</td>
<td></td>
<td>24 Shonkar St., Karya Arie</td>
</tr>
<tr>
<td>Phone: +420 – 251 551 470</td>
<td></td>
<td></td>
<td>IL-49001 Petah-Tiqva</td>
</tr>
<tr>
<td>Fax: +420 (0)251-551-471</td>
<td></td>
<td></td>
<td>Phone: +972 (0)19 / 922 18 24</td>
</tr>
<tr>
<td>MITSUBISHI ELECTRIC EUROPE B.V. French Branch</td>
<td></td>
<td></td>
<td>Fax: +972 (0)1 / 924 0761</td>
</tr>
<tr>
<td>25, Boulevard du Bouvets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-92741 Nanterre Cedex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone: +33 (0)1 / 55 68 55 68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: +33 (0)1 / 55 68 57 57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITSUBISHI ELECTRIC EUROPE B.V. Irish Branch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westgate Business Park, Ballymount</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRL-Dublin 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone: +353 (0)11418900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: +353 (0)11418990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITSUBISHI ELECTRIC EUROPE B.V. Italian Branch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viale Colosseo 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-20041 Agrate Brianza (MB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone: +39 039 / 60 53 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: +39 039 / 60 53 312</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITSUBISHI ELECTRIC EUROPE B.V. Polish Branch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krakowska 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL-32-083 Balice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone: +48 (0) 12 / 630 47 00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: +48 (0) 12 / 630 47 01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITSUBISHI ELECTRIC EUROPE B.V. Russian Branch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52, bl. 3 Komodamskaya nab 8 floor RU-115054 Moscow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone: +7 495 721-2070</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: +7 495 721-2071</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITSUBISHI ELECTRIC EUROPE B.V. Spanish Branch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carretera de Rubí 76-80 E 08190 Sant Cugat del Vallés (Barcelona)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone: 902 131121 / +34 935653131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: +34 935891579</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITSUBISHI ELECTRIC EUROPE B.V. UK Branch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travellers Lane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK-Hatfield, Herts. AL10 8XB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone: +44 (0)1707 / 27 01 00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: +44 (0)1707 / 27 86 95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITSUBISHI ELECTRIC CORPORATION Office Tower 2“ F” 8-12, 1 chome, Harumi Chuo-ku Tokyo 104-6212</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone: +81 3 622 160 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: +81 3 622 160 75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITSUBISHI ELECTRIC AUTOMATION, Inc 500 Corporate Woods Parkway Vernon Hills, IL 60061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone: +1 847 478 21 00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: +1 847 478 22 53</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>